
8 The Minimal Supersymmetric Standard Model:
Part 2

8.1 Electroweak Symmetry Breaking
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Hu

)(|H0
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d |
2)

+ b (H+
u H

−
d −H

0
uH

0
d) + h.c.

+
1
8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |

2)2

+
1
2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2. (8.1)

V (H0
u,H

0
d) = (|µ|2 +m2

Hu
)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + h.c.)

+
1
8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (8.2)

To destabilize the origin we need:

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (8.3)

To ensure the potential is bounded from below we need:

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (8.4)

These relations show that there is a tight relation between the soft SUSY
breaking parameters and the SUSY preserving µ-term. A prioi these param-
eters should be unrelated. This is known as the “µ problem”. Solutions to
this problem require µ to vanish at tree level and be produced as a by-
product of SUSY breaking [5, 6, 7] for examples. .

〈H0
u〉 =

vu√
2

(8.5)

〈H0
d〉 =

vd√
2

(8.6)

m2
Z =

1
4
(g2 + g′2)v2 (8.7)

v2 = v2
u + v2

d ≈ (246 GeV)2 (8.8)
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Figure 1: The µ-problem for m2
Hu

= −1
2m

2
Hd

.

sinβ ≡ vu

v
(8.9)

cosβ ≡ vd

v
(8.10)

tanβ = vu/vd (8.11)

cos 2β =
v2
d − v2

u

v2
(8.12)

0 < β < π/2 (8.13)

The minimum conditions ∂V/∂H0
u = ∂V/∂H0

d = 0 give

|µ|2 +m2
Hd

= b tanβ − (m2
Z/2) cos 2β; (8.14)

|µ|2 +m2
Hu

= b cotβ + (m2
Z/2) cos 2β. (8.15)

this is another way of seeing the “µ problem”
The Higgs scalar fields consist of eight real scalar degrees of freedom.

When the electroweak symmetry is broken, three of them are the would-be
Nambu-Goldstone bosons π0, π± which are eaten by the Z0 and W±. This
leaves five degrees of freedom A0,H±, h0, and H0. Shift fields by vevs:

H0
u →

vu√
2

+H0
u (8.16)

H0
d →

vd√
2

+H0
d (8.17)

V ⊃ (ImH0
u, ImH

0
d)

(
b cotβ b
b b tanβ

)(
ImH0

u

ImH0
d

)
(8.18)

(
π0

A0

)
=
√

2
(
sβ −cβ
cβ sβ

)(
ImH0

u

ImH0
d

)
, (8.19)
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m2
A =

b

sβcβ
(8.20)

V ⊃ (H+∗
u ,H−

d )

(
b cotβ +m2

W c2β b+m2
W cβsβ

b+m2
W cβsβ b tanβ +m2

W s2β

)(
H+

u

H−∗
d

)
(8.21)

(
π+

H+

)
=
(
sβ −cβ
cβ sβ

)(
H+

u

H−∗
d

)
, (8.22)

π− = π+∗ and H− = H+∗

m2
H± = m2

A +m2
W (8.23)

V ⊃ (ReH0
u,ReH0

d)

(
b cotβ +m2

Zs
2
β −(b+m2

Z)cβsβ

−(b+m2
Z)cβsβ b tanβ +m2

Zc
2
β

)(
ReH0

u

ReH0
d

)
(8.24)

(
h0

H0

)
=
√

2
(

cosα − sinα
sinα cosα

)(
ReH0

u

ReH0
d

)
. (8.25)

m2
h,H =

1
2

(
m2

A +m2
Z ∓

√
(m2

A +m2
Z)2 − 4m2

Zm
2
A cos2 2β

)
. (8.26)

the mixing angle α is determined given by

sin 2α
sin 2β

= −m
2
A +m2

Z

m2
H −m2

h

;
cos 2α
cos 2β

= −m
2
A −m2

Z

m2
H −m2

h

. (8.27)

mA, m±
H , and mH →∞ as b→∞ but mh is maximized at mA = ∞

mh < | cos 2β|mZ (8.28)

there are however large one-loop corrections that we will see later. For
mA0 � mZ , A0, H0, and H± are much heavier than h0, forming a nearly
degenerate isospin doublet. In this limit, the angle α is fixed to be approx-
imately β − π/2, and h0 has Standard Model couplings to quarks, leptons,
and gauge bosons.
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8.2 The Sparticle Spectrum: Squarks and Sleptons

In general we have to diagonalize 6×6 matrices since all scalars with the
same quantum numbers mix. Neglecting mixing for the third generation,
we have for the top squarks

−L ⊃ ( t̃∗L t̃∗R )m2
t̃

(
t̃L
t̃R

)
(8.29)

where

m2
t̃

=
(
m2

Q3
+m2

t +Du v(atsβ − µytcβ)
v(atsβ − µytcβ) m2

u3
+m2

t +Du

)
, (8.30)

and

Dφ = (T φ
3 −Q

φ
EM sin2 θW ) cos 2β m2

Z . (8.31)

diagonalize to give mass eigenstates t̃1 and t̃2 with m2
t̃1
< m2

t̃2
. Mixing angles

then appear in vertices for mass eigenstates.
Similarly for bottom squarks and tau sleptons (in their gauge-eigenstate

bases (b̃L, b̃R) and (τ̃L, τ̃R))

m2

b̃
=

(
m2

Q3
m2

b +Dd v(abcβ − µybsβ)
v(abcβ − µybsβ) m2

d3
+m2

b +Dd

)
; (8.32)

m2
τ̃

=
(

m2
L3

+m2
τDe v(aτcβ − µyτsβ)

v(aτcβ − µyτsβ) m2
e3

+m2
τ +De

)
(8.33)

Note that large masses for third generation particles allow for large mixing
in these matrices and the possibility that the lower eigenvalue is driven
negative. This would give vevs to squarks and sleptons which can break
U(1)em and SU(3)c.

It is interesting to note what would have happened if we didn’t have soft
SUSY breaking mass terms

m2
ũ

=
(

mu
†mu +DuI ∆u

∆u
† mumu

† +DuI

)
(8.34)

m2

d̃
=
(

md
†md +DdI ∆d

∆d
† mdmd

† +DdI

)
(8.35)
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Note that Du +Du +Dd +Dd = 0, so at least one Dφ ≤ 0. Suppose Du ≤ 0,
let

muγ = m0γ (8.36)

where m0 is the smallest eigenvalue of mu then

(γT , 0)m2
ũ

(
γ
0

)
≤ m2

0 (8.37)

So there would be a squark lighter than the u or d quarks [8]

8.3 The Sparticle Spectrum: Charginos

W̃± and H̃±
u mix, their mass eigenstates are called charginos. In basis

ψ± = (W̃+, H̃+
u , W̃

−, H̃−
d ), the chargino mass terms are

L ⊃ −1
2
(ψ±)TM

C̃
ψ± + h.c. (8.38)

where

M
C̃

=
(

0 XT

X 0

)
; X =

(
M2

√
2sβ mW√

2cβ mW µ

)
. (8.39)

diagonalize by

U∗XV−1 =
(
m

C̃1
0

0 m
C̃2

)
. (8.40)

(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
;

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (8.41)

U and V appear in the interaction vertices for chargino mass eigenstates.

m2
C̃1,C̃2

=
1
2

[
(|M2|2 + |µ|2 + 2m2

W )

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
(8.42)

In the limit that ||µ| ±M2| � mW the charginos are approxiamtely a wino
and a higgsino with masses |M2| and |µ|.
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8.4 The Sparticle Spectrum: Neutralinos

ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), all mix with each other form four neutral mass eigen-

states called neutralinos: Ñi (i = 1, 2, 3, 4) and m
Ñ1

< m
Ñ2

< m
Ñ3

< m
Ñ4

the neutralino mass terms in the lagrangian are

L ⊃ −1
2
(ψ0)TM

Ñ
ψ0 + h.c. (8.43)

where

M
Ñ

=


M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

 . (8.44)

diagonalized by a unitary matrix N

Mdiag

Ñ
= N∗M

Ñ
N−1 (8.45)

for

mZ � |µ±M1|, |µ±M2| (8.46)

then the neutralino mass eigenstates are very nearly B̃, W̃ 0, (H̃0
u±H̃0

d)/
√

2,
with mass eigenvalues: (M1, N2, |µ|, |µ|). A“bino-like” LSP can make a good
dark matter candidate, and N1 is often assumed to be the LSP.

8.5 The Sparticle Spectrum: Gluinos

The gluino is a color octet fermion so it can’t mix with anything, it’s mass
is just given by the soft SUSY breaking mass M3.
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